FeoB2 Functions in magnetosome formation and oxidative stress protection in Magnetospirillum gryphiswaldense strain MSR-1.

نویسندگان

  • Chengbo Rong
  • Chan Zhang
  • Yiting Zhang
  • Lei Qi
  • Jing Yang
  • Guohua Guan
  • Ying Li
  • Jilun Li
چکیده

Magnetotactic bacteria (MTB) synthesize unique organelles, the magnetosomes, which are intracellular nanometer-sized, membrane-enveloped magnetite. The biomineralization of magnetosomes involves the uptake of large amounts of iron. However, the iron metabolism of MTB is not well understood. The genome of the magnetotactic bacterium Magnetospirillum gryphiswaldense strain MSR-1 contains two ferrous iron transport genes, feoB1 and feoB2. The FeoB1 protein was reported to be responsible mainly for the transport of ferrous iron and to play an accessory role in magnetosome formation. To determine the role of feoB2, we constructed an feoB2 deletion mutant (MSR-1 ΔfeoB2) and an feoB1 feoB2 double deletion mutant (MSR-1 NfeoB). The single feoB2 mutation did not affect magnetite crystal biomineralization. MSR-1 NfeoB had a significantly lower average magnetosome number per cell (∼65%) than MSR-1 ΔfeoB1, indicating that FeoB2 plays a role in magnetosome formation when the feoB1 gene is deleted. Our findings showed that FeoB1 has a greater ferrous iron transport ability than FeoB2 and revealed the differential roles of FeoB1 and FeoB2 in MSR-1 iron metabolism. Interestingly, compared to the wild type, the feoB mutants showed increased sensitivity to oxidative stress and lower activities of the enzymes superoxide dismutase and catalase, indicating that the FeoB proteins help protect bacterial cells from oxidative stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FeoB 2 functions in magnetosome formation and oxidative stress 2 protection in Magnetospirillum gryphiswaldense strain

24 Magnetotactic bacteria (MTB) synthesize unique organelles, the magnetosomes, 25 which are intracellular nanometer-sized, membrane-enveloped magnetite. The 26 biomineralization of magnetosomes involves the uptake large amounts of iron. 27 However, the iron metabolism of MTB is not well understood. The genome of the 28 magnetotactic bacterium Magnetospirillum gryphiswaldense strain MSR-1 conta...

متن کامل

Effects of Environmental Conditions on High-Yield Magnetosome Production by Magnetospirillum gryphiswaldense MSR-1

Background:  Magnetotactic bacteria are a heterogeneous group of Gram-negative prokaryote cells that produce linear chains of magnetic particles called magnetosomes, intracellular organelles composed of magnetic iron particles. Many important applications have been defined for magnetic nanoparticles in biotechnology, such as cell separation applications and  acting as carriers of enzymes, antib...

متن کامل

Expression patterns of key iron and oxygen metabolism genes during magnetosome formation in Magnetospirillum gryphiswaldense MSR-1.

To evaluate the expression patterns of genes involved in iron and oxygen metabolism during magnetosome formation, the profiles of 13 key genes in Magnetospirillum gryphiswaldense MSR-1 cells cultured under high-iron vs. low-iron conditions were examined. Cell growth rates did not differ between the two conditions. Only the high-iron cells produced magnetosomes. Transmission electron microscopy ...

متن کامل

Fur in Magnetospirillum gryphiswaldense Influences Magnetosomes Formation and Directly Regulates the Genes Involved in Iron and Oxygen Metabolism

Magnetospirillum gryphiswaldense strain MSR-1 has the unique capability of taking up large amounts of iron and synthesizing magnetosomes (intracellular magnetic particles composed of Fe(3)O(4)). The unusual high iron content of MSR-1 makes it a useful model for studying biological mechanisms of iron uptake and homeostasis. The ferric uptake regulator (Fur) protein plays a key role in maintainin...

متن کامل

A novel role for Crp in controlling magnetosome biosynthesis in Magnetospirillum gryphiswaldense MSR-1

Magnetotactic bacteria (MTB) are specialized microorganisms that synthesize intracellular magnetite particles called magnetosomes. Although many studies have focused on the mechanism of magnetosome synthesis, it remains unclear how these structures are formed. Recent reports have suggested that magnetosome formation is energy dependent. To investigate the relationship between magnetosome format...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 194 15  شماره 

صفحات  -

تاریخ انتشار 2012